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Abstract: The need for concrete with ‘super’ strength and ‘super’ ductility for greater sustainability
has been answered by the existence of ultra-high-performance concrete (UHPC) and ultra-high-
performance fiber-reinforced concrete (UHPFRC). Over the last decades, UHPFRC has been imple-
mented in actual concrete structures, as well as used to retrofit structural elements, including columns.
However, the use of UHPC and UHPFRC confinement to strengthen normal concrete columns is
still limited. Therefore, this research aims to investigate the advanced performance of columns using
UHPC and UHPFRC confinement in the context of the strength and ductility of such columns, such
as load capacity, stress–strain behavior, and the crack pattern in the failure mode. This research is an
advanced study of several investigations previously carried out by other authors on the characteristics
of UHPC and UHPFRC, as well as columns confined by UHPC and UHPFRC. The methods used in
this research are experimental and analytical. The experimental results were compared to analytical
calculations for validation. This research produced 12 short-column specimens confined by UHPC
(CF0 series) and UHPFRC (CF1 and CF2 series) that contained 0%, 1%, and 2% fiber and were also
tested for axial loading and various eccentricities as follows: e = 0, 35, and 70 mm. The results found
that the normal strength concrete (NSC) columns confined by UHPC and UHPFRC could sustain a
higher maximum load and stress, and also sustain greater vertical deformation and strain compared
to the control specimens. It was noted that specimen CF2-35 had the highest load capacity, vertical
deformation, maximum stress, and maximum vertical strain compared to specimen C-0 (control
column with no confinement). The specimen CF2-35 (column confined by UHPC with a 2% fiber
volume with an eccentricity of 35 mm) also exhibited a ductile failure mode and very minor cracks. It
was also found that 75% of the specimens had 0–39% errors and 25% had 0–13% errors. The research
proved that the addition of a volume of 2% fiber to the UHPFRC minimizes the crack of the failure
mode and prevents confinement spalling of the column. This research has led to the conclusion that
UHPC and UHPFRC confinements will increase the strength and ductility of columns.

Keywords: column; strength; performance; UHPC; UHPFRC; confinement

1. Introduction

Ultra-high-performance concrete (UHPC) was developed in the 1970s to cope with the
limitations of ordinary reinforced concrete. This concrete invention successfully promotes
superior strength, mechanical properties, durability, and long-term stability, and it is known
as an innovative cement-based composite material [1,2]. The implementation of UHPC also
provides viable and sustainable concrete structures with ultra-high-strength properties,
improved fatigue behavior, very low porosity, and excellent resistance against aggressive
environments [3]. However, the application of UHPC in construction has limitations, such
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as a higher initial cost, lack of contractors with experience, and absence of widely accepted
design provisions [4].

Since there has been an urgent need for concrete with ‘super’ strength and ‘super’ duc-
tility for greater sustainability, ultra-high-performance fiber-reinforced concrete (UHPFRC)
was developed in 1972 with the production of ultra-high-strength cement paste [5–7]. In the
1980s, there was a progressive development of UHPFRC, for example, the invention of the
densified small particle (DSP) and macro defect-free (MDF) [8,9] flowable cement–mortar
composite pastes [10], and the reactive powder concrete (RPC) [11].

There are several studies on columns confined by UHPC or UHPFRC. A study of
circular steel tubes confined by UHPC columns under uniaxial compression was reported
in [12]. The 2% fiber volume of the UHPFRC did not result in any significant change to the
strength. However, the addition of steel fibers to the UHPFRC enhanced the ductility in
the post-peak stage of the load–deformation. Another study reported experimental and
analytical research on UHPC columns confined by high-strength transverse reinforcement
under eccentric compression [13]. The investigation had several parameters, such as
deformation capacity, peak load, and residual load carrying capacity of the column under
eccentric loading, which were better than those of the reference specimens. In the context
of column retrofitting, a study on the strengthening of several columns using a UHPFRC
‘jacket’ (i.e., confinement) was reported in [14]. Carbon fiber-reinforced polymer (CFRP)
ropes were used for circular columns with various layers and spacings that were preloaded
at different levels [15]. Several studies have been carried out to investigate the performance
of short columns confined by fibrous ‘jackets’ [16], UPHFRC tubes [17], and FRPs [18].

The innovation of UHPC and UHPFRC is still currently needed in the construction
field. Over the last decades, UHPFRC has been implemented in actual concrete structures,
as well as used to retrofit structural elements [19], including columns. However, the use of
UHPC and UHPFRC confinement to strengthen normal concrete columns is still limited,
especially in the context of the strength and ductility of columns, such as load capacity,
stress–strain behavior, and crack pattern at the failure mode.

It should be noted that this study is an advanced study of previous research by
other authors [20–25] on UHPC and UHPFRC characteristics, as well as columns confined
by UHPC and UHPFRC. The first studies by such authors investigated the mechanical
properties of UHPC and UHPFRC (i.e., tensile and compressive strength) as reported
in [20,22,24,25]. The next studies conducted were on normal strength columns confined by
UHPC [21,23]. The modeling of the columns confined by UHPC was conducted using the
finite element program as a numerical approach to validate the experimental results [21].
The initial simple analyses of several columns confined by UHPC and UHPFRC were
reported in [23]. In this advanced study, a specimen series of NSC (normal strength
concrete) columns confined by UHPC and UHPFRC were analyzed in depth on its load–
deformation behavior, stress–strain performance, crack patterns, and failure mode and
ductility. It also conducted analytical calculations as a comparison for the experimental
results. This advanced study of columns confined by UHPC and UHPFRC was conducted
to meet the conclusion and achieve the purpose of the research.

2. Materials and Methods

This research was conducted using experimental and analytical methods. Numerical
modeling of the columns’ behavior was previously carried out and reported by other
authors using a 3D nonlinear finite element analysis (FEA) program to run a nonlinear
analysis of the behavior of columns confined by UHPC [21]; hence, a nonlinear analysis
of the behavior of columns was not conducted in this study. The experimental results are
compared to the analytical calculations using the equations derived in the studies in [26–29]
to meet the conclusions.
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2.1. Materials

This research produced 12 short-column specimens that were tested for axial loading.
Those columns were subjected to 2 loading configurations as concentric loading (with
e = 0 mm) and eccentric loadings (with e = 35 mm and e = 70 mm). Those short columns
are used in this research because they are designed to avoid additional bending moments
due to the second order of the P-∆ Effect [30].

All column specimens made of NSC (normal strength concrete) were confined by
UHPC or UHPFRC except the control specimens. The NSC columns were C30/37 class and
had dimensions of 200 mm × 200 mm, a height of 750 mm, and concrete cover thickness
of 25 mm. The stirrups of CSC columns used an ∅8 mm steel bar with a pitch of 100 mm
(outside lap section) and 50 mm (in lap section). The experiment was conducted at the
Official Material Testing Institute for Construction Industry (Amtliche Materialprüfanstalt
für das Bauwesen, AMPA) of the University of Kassel. The column specimen’s description is
described in Table 1, while the geometry, dimension, and cross-section of column specimens
are presented in Figure 1.

In this study, the 3 NSC columns without confinement became the control specimens,
while the other 9 columns were confined by UHPC and UHPFRC with a thickness of 21 mm
and fibers (0%, 1%, and 2%). Steel fibers, which were golden-colored fibers (Figure 2), were
added into the UHPC and UHPFRC mixtures with a length of 10 mm and diameter of
0.2 mm. The NSC columns used 4Ø12 mm deformed steel bars BSt500S(A) as longitudinal
reinforcements, and Ø8 mm as ties with a pitch of 100 mm (outside lap section) and 50 mm
(in lap section). Sandblasting was added to make a monolithic surface interface between
the NSC column and UHPC and UHPFRC confinements. The UHPC and UHPFRC mixture
formula was M3Q_210 with designed compressive strength (fcku) of about 200 MPa at the
age of 28 days.

Several tests were conducted to obtain the properties of NSC, UHPC/UHPFRC, fiber,
and steel bars, which are presented in Table 2.
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Table 1. Column specimen’s description.

No. Specimen Code Description Fiber Percentage Loading Type Eccentricity

1 C-0 CONTROL 1 0% concentric e = 0 mm
2 CF0-0 NSC + UHPC 0% 0% concentric e = 0 mm
3 CFl-0 NSC + UHPFRC 1% 1% concentric e = 0 mm
4 CF2-0 NSC + UHPFRC 2% 2% concentric e = 0 mm

5 C-35 CONTROL 2 0% eccentric e = 35 mm
6 CF0-35 NSC + UHPC 0% 0% eccentric e = 35 mm
7 CFl-35 NSC + UHPFRC 1% 1% eccentric e = 35 mm
8 CF2-35 NSC + UHPFRC 2% 2% eccentric e = 35 mm

9 C-70 CONTROL 3 0% eccentric e = 70 mm
10 CF0-70 NSC + UHPC 0% 0% eccentric e = 70 mm
11 CFl-70 NSC + UHPFRC 1% 1% eccentric e = 70 mm
12 CF2-70 NSC + UHPFRC 2% 2% eccentric e = 70 mm
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Table 2. The result of the properties test of NSC, UHPC/UHPFRC, fiber, and steel bar.

Description Unit NSC UHPC
0%

UHPFRC
1%

UHPFRC
2% Fiber

Steel Bars

Ø 12 mm Ø 8 mm

Slump mm 20.19 67.28 77.44 77.56

Compressive strength
Mean MPa 35.81 18.02 188.72 189.97

Characteristic MPa 33.74 178.85 181.25 182.59

Modulus rupture
(flexural) strength MPa 3.42

Density kg/m3 2197.20 2295.67 2370.33 2425.50 7850 7850 7850

Modulus elasticity MPa 33,768.87 50,307.63 50,501.98 50,619.86 200,000 200,000 200,000

Length mm 10

Diameter mm 0.2

Tensile strength,
Splitting/indirect

Flexural
MPa 2.85
MPa 8.04 15.57 16.02

Axial MPa
Ultimate MPa 0.85 1.08 7.30 1250 678.53 641.8

Yield MPa 582.08 550.53

2.2. Experiment Setup

The experiment and loading tests were conducted in the Structural Materials and
Engineering Laboratories of the Civil and Environmental Engineering Department at the
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University of Kassel. A hydraulic testing machine with a maximum capacity limit of 6.3 MN
was used, as presented in Figure 3. During the loading test, a velocity of 0.01 mm/s was
applied with a frequency of 5 values per second.
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2.3. Methods
2.3.1. Modeling of UHPC/UHPFRC Compressive Strength

A model of the UHPC section capacity in a column’s section was proposed by this
study and also the previous ones [21,31] based on the development of 4 standards and
guidelines [26–29] such as the standard developed by VSL (Aust) Pty Ltd. which provided
guidelines for the design of prestressed concrete beams using the Reactive Powder Concrete
known as DUCTAL, also consistent with the limit states design philosophy of AS3600-
1994 [26]; the AFGC/SETRA working group on Ultra-High Performance Fibre-Reinforced
Concrete chaired first by Benoît Lecinq (when he was at SETRA), then by Jacques Re-
splendino (CETE de Lyon) [27]; the Recommendations for Design and Construction of
Ultra High Strength Fiber Reinforced Concrete Structures, JSCE guidelines for concrete;
the Subcommittee on Research of Ultra High Strength Fiber Reinforced Concrete; Japan
Society of Civil Engineers (JSCE) [28]; and also Sachstandsbericht Ultrahochfester Beton—
Betontechnik und Bemessung [29]. In this study, the model calculated the capacity of UHPC
in a column’s section under axial loading. The actual compression loading under axial
loading is described by Equations (1) and (2).

NRd_UHPC =
[
fcd(Ac − As) + fyd∗As

]
(1)

NRd_UHPFRC = [fcd(Ac − As) + fyd∗As] + [
(
fcud, i %(Acu − Ac) + (( χ ∗ fctfd, i %

)
∗Afu, i %)] (2)

where:
NRd_UHPC = actual compression loading of UHPC column/section;
NRd_UHPFRC = actual compression loading of UHPFRC column/section;
fcud,0% = design value of UHPC compressive strength (UHPC = 0% fiber);
fcud,i% = design value of UHPFRC compressive strength (UHPFRC = i% fiber);
χ = safety factor (0.85–0.90) based on [31];
fctfd,i% = design value of maximum tensile stress;
Afu,i% = total cross section of the fiber.
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2.3.2. Stress–Strain Relationship of UHPC/UHPFRC

The stress–strain curve of the Ultimate Limit State (ULS) design that is based on DIN
1045-1 can be explained by Equation (3) as follows:

σc = −fcud.[1 − (1 − εc

εc2u
)n] for 0 ≥ εc ≥ εc2u (3)

where:
εc = strain at maximum stress;
εc2u = ultimate strain.

3. Results
3.1. Load–Deformation

Figure 4 describes the relationship of the load (P) and vertical deformation (∆Lv) of
all column specimen series of C, CF0, CF1, and CF2. For the C series specimens presented
in Figure 4a, the highest load capacity was achieved by C-0 with P = 919.30 kN and
∆Lv = 2.08 mm, followed by C-35 with P = 740.63 kN and ∆Lv = 1.96 mm, and followed by
C-70 with P = 471.24 kN and ∆Lv = 2.38 mm.
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The result of the axial loading for the CF0 series described in Figure 4b of the specimens
can be explained as follows: It was found that a maximum load capacity was achieved by
CF0-0 with P = 2803.00 kN and ∆Lv = 2.94 mm, followed by CF0-35 with P = 2106.97 kN
and ∆Lv = 2.42 mm, and followed by CF0-70 with P = 1399.10 kN and ∆Lv = 2.45 mm.

It was also recorded and shown in Figure 4c that the specimen series of CF1 performed
better than the specimen series of C and CF-0. This study also noted that CF1-0 achieved
the maximum load capacity of P = 2962.51 kN and ∆Lv = 2.96 mm, followed by CF1-35
with P = 2368.30 kN and ∆Lv = 2.85 mm, followed by CF1-70 with P = 1510.49 kN and
∆Lv = 2.72 mm.

In general, the highest load capacity of all specimens was achieved by the specimen
series of CF2 as presented in Figure 4d. The maximum load capacity was achieved by
CF2-0 with P = 3246.26 kN and ∆Lv = 3.09 mm, followed by CF2-35 with P = 2835.76 kN
and ∆Lv = 3.14 mm, and also followed by CF2-70 with P = 1656.14 kN and ∆Lv = 2.76 mm.

It was observed that the specimen series of CF1 and CF2 performed a specific phe-
nomenon as described in Figure 4, that after the peak load was achieved, there was a ‘tail’
of the curve that indicated post-peak deformation caused by the ductility of the columns.

3.2. Stress–Strain Behavior

This study observed the stress–strain behavior of the column specimens of all series as
presented in Figure 5. It was found that the stress (σ) and vertical strain (δv) relationship
was similar to the load–deformation curve in Figure 4.

It was found from the experiment that among the specimens of C series as described
by Figure 5a, C-0 achieved the highest value of σ = 22.98 MPa and δv = 0.0028 mm/mm,
followed by C-35 with σ = 18.52 MPa and δv = 0.0026 mm/mm, and C-70 with σ = 11.78 MPa
and δv = 0.0032 mm/mm. The experiment found the longer ‘tail’ of vertical strain achieved
by C-0.

Figure 5b described the stress–vertical strain curve of the specimen series of CF0. The
highest stress was achieved by CF0-0 with σ = 47.86 MPa and δv = 0.0036 mm/mm, followed
by CF0-35 with σ = 35.98 MPa and δv = 0.0032 mm/mm. The lowest stress in the specimen
series of CF0 was achieved by CF0-70 with σ = 23.89 MPa and δv = 0.0045 mm/mm. In this
series of CF0, CF0-35 was observed to have the longest ‘tail’ of the vertical strain, followed
by CF0-70.

The stress–vertical strain curve of the specimens of the CF1 series is described in
Figure 5c. It was recorded that CF1-0 achieved the highest value of stress and strain with
σ = 50.59 MPa and δv = 0.0039 mm/mm, followed by CF1-35 with σ = 40.39 MPa and
δv = 0.0038 mm/mm. It was also found that the lowest value of stress and strain was
achieved by CF1-70 with σ = 25.79 MPa and δv = 0.0036 mm/mm. The longest ‘tail’ of
vertical strain was achieved by CF1-35, followed by CF1-70.

The specimens of the CF2 series stress–vertical strain curve are shown in Figure 5d.
It was recorded that CF2-0 achieved the highest stress and strain with σ = 55.43 MPa and
δv = 0.0041 mm/mm, followed by CF2-35 with σ = 48.40 MPa and δv = 0.0042 mm/mm.
The experiment results also noted that CF2-70 achieved the lowest stress and strain with
σ = 28.28 MPa and δv = 0.0037 mm/mm. A very long ‘tail’ of vertical strain was achieved
by CF2-35, followed by CF2-70.

The analytical results using Equations (1)–(3) are presented in Table 3. The same
phenomenon was experienced by the analytical results that were also performed by the
experimental results described in Figures 3 and 4 as follows. It was found that the addition
of fiber into the mixture of confinements increased the load capacity and stress as shown
by the specimen series of CF0 (0% fiber in confinement), CF1 (1% fiber in confinement),
CF2 and (2% fiber in confinement). This result confirmed the studies of [12–14] that the
addition of fiber increases the strength and ductility of the column. The eccentricities of the
columns also gave significant influence that the greater the eccentricity that existed, the
lower the load capacity performed.
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Table 3. Analytical results of Pmax and σmax of all specimen series.

No Specimen
Code

Experimental Result Analytical Result

Pmax σmax Pmax σmax
(kN) (MPa) (kN) (MPa)

1 C-0 919.30 22.98 1058.95 26.47
2 CF0-0 2803.00 47.86 2564.09 43.78
3 CFl-0 2962.51 50.59 2776.82 47.42
4 CF2-0 3246.26 55.43 2791.25 47.66
5 C-35 740.63 18.52 693.65 17.34
6 CF0-35 2106.97 35.98 1879.40 32.09
7 CFl-35 2368.30 40.39 2055.87 35.10
8 CF2-35 2835.76 48.40 2044.88 34.92
9 C-70 471.24 11.78 515.74 12.89
10 CF0-70 1399.10 23.89 1483.31 25.33
11 CFl-70 1510.49 25.79 1632.12 27.87
12 CF2-70 1656.14 28.28 1613.44 27.55



Fibers 2023, 11, 44 9 of 14

3.3. Crack Pattern

The experiment has shown that all specimens obtained crack patterns after the loading
e as described obviously by the specimens with e = 70 mm in Figure 6. It was observed
that specimen series C experienced fewer cracks compared to specimen series CF1 and
CF2. However, there was spalling of concrete in the corner of one side of the column. The
series of CF0 was observed being crushed significantly and the confinement spalling out
of the main columns when the specimen was failed. The specimen series of CF1 and CF2
experienced ductile failure and the cracks only happened on one side, in the center of the
side. There was a very loud noise when the CF0 had a sudden failure.
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4. Discussion

This study observes, in general, that the experimental results have higher values of
load and stress compared to the analytical results, as described by Figures 7 and 8. However,
several analytical results achieved slightly higher values of maximum loads and stresses
of C-0 (control specimen as the baseline), C-70, CF0-70, CF1-70, and CF2-70. It should be
emphasized that the bigger the percentage of fiber added to the confinement, the higher
the load capacity and stress of the specimen. The highest performance of specimens was
achieved by the zero eccentricity of the specimens.
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A comparison to another study of [17] will give a good insight as presented in Table 4.
The rectangular column specimen series of both studies to be discussed have the same fiber
volume for the UHPFRC confinement as 2%, and a similar ratio of width and height of the
column. Different loading types were applied; eccentric loading was applied to the series
of CF2 of the current study, and concentric loading was applied to the series of HCC2 [17].

Table 4. Description of the specimen of column confined by UHPHFRC from the current study
compared to the study of Wu et al. [17].

Description Unit Current Study Wu et al.

Column dimension
width mm 242 400
height mm 750 1200

UHPFRC confinement
materials
thickness mm 21 20

fiber volume % 2 2

Figure 9 shows that the crack pattern of the current study was very minor that ap-
peared on the corner of Face 1 of the column, and the upper middle of Face 4 of the column.
The specimen’s series of the study of [17] showed that the vertical cracks near the column
borders appeared in most faces (Faces 1, 3, and 4). It seemed that the bond between the
column core and the UHPFRC was not good enough. In general, the 2% fiber volume
prevented catastrophic failure in both studies, but an optimum fiber volume belongs to the
current study compared to [17] since the crack pattern at failure mode was found to have a
minor crack. Hence, the series of the CF2 of column confined by UHPFRC in the current
study achieved better ductility compared to [17].

Fibers 2023, 11, x FOR PEER REVIEW 12 of 15 
 

of the column. Different loading types were applied; eccentric loading was applied to the 
series of CF2 of the current study, and concentric loading was applied to the series of 
HCC2 [17]. 

Table 4. Description of the specimen of column confined by UHPHFRC from the current study com-
pared to the study of Wu et al. [17]. 

Description Unit Current Study Wu et al. 
Column dimension    

width mm 242 400 
height mm 750 1200 

UHPFRC confinement    

materials    

thickness mm 21 20 
fiber volume % 2 2 

Figure 9 shows that the crack pattern of the current study was very minor that ap-
peared on the corner of Face 1 of the column, and the upper middle of Face 4 of the col-
umn. The specimen’s series of the study of [17] showed that the vertical cracks near the 
column borders appeared in most faces (Faces 1, 3, and 4). It seemed that the bond be-
tween the column core and the UHPFRC was not good enough. In general, the 2% fiber 
volume prevented catastrophic failure in both studies, but an optimum fiber volume be-
longs to the current study compared to [17] since the crack pattern at failure mode was 
found to have a minor crack. Hence, the series of the CF2 of column confined by UHPFRC 
in the current study achieved better ductility compared to [17]. 

  
(a) (b) 

Figure 9. Crack pattern at failure mode of column confined by UHPFRC, (a) current study, and (b) 
Wu et al. [17]. 

The results of this study found that the optimum parameter values were achieved by 
CF2-35 because it has a load capacity of 3.8 times compared to the control specimen (C-0), 
a vertical deformation of 1.61 times compared to C-0, a maximum stress of 2.61 times com-
pared to C-0, and a maximum vertical strain of 1.60 times compared to C-0. Compared to 
the study of [17], the current study that performed the peak load of CF2-0 was 3.53 times 
to the control as presented by Table 5, with P = 3246.26 kN and ΔLv = 3.09 mm, while in 
the study of [17], the peak load of HCC2 was 1.11 times to the control, with P = 3729 kN 
and δu = 4 mm. Hence, this current study performs better column ductility compared to 
the study of [17]. 

  

Figure 9. Crack pattern at failure mode of column confined by UHPFRC, (a) current study, and
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The results of this study found that the optimum parameter values were achieved
by CF2-35 because it has a load capacity of 3.8 times compared to the control specimen
(C-0), a vertical deformation of 1.61 times compared to C-0, a maximum stress of 2.61 times
compared to C-0, and a maximum vertical strain of 1.60 times compared to C-0. Compared
to the study of [17], the current study that performed the peak load of CF2-0 was 3.53 times
to the control as presented by Table 5, with P = 3246.26 kN and ∆Lv = 3.09 mm, while in
the study of [17], the peak load of HCC2 was 1.11 times to the control, with P = 3729 kN
and δu = 4 mm. Hence, this current study performs better column ductility compared to
the study of [17].
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Table 5. The ratio of specimens to control of several parameters.

No Specimen Code
Ratio

Specimen/Control

Pmax LV σmax εmax

1 C-0 1.00 1.00 1.00 1.00
2 CF0-0 3.05 1.41 2.08 1.30
3 CFl-0 3.22 1.42 2.20 1.40
4 CF2-0 3.53 1.49 2.41 1.49
5 C-35 1.00 1.00 1.00 1.00
6 CF0-35 2.84 1.24 1.94 1.23
7 CFl-35 3.20 1.46 2.18 1.45
8 CF2-35 3.83 1.61 2.61 1.60
9 C-70 1.00 1.00 1.00 1.00
10 CF0-70 2.97 1.03 2.03 1.43
11 CFl-70 3.21 1.14 2.19 1.14
12 CF2-70 3.51 1.16 2.40 1.16

For a better analysis, the errors of the Pmax experimental and analytical results de-
scribed in Table 3 were analyzed by Box Plot, as presented in Figure 10. It is found that 75%
of the specimens have a higher Pmax compared to the control (0–39% error), and only 25%
have a lower Pmax compared to the control (0–13% error). Hence, the maximum error of
39% was accepted and confirmed as an actual phenomenon because it was the result of the
loading test.

Figure 10. The errors of Pmax between experimental and analytical results.

5. Conclusions

This study investigates several columns confined by UHPC and UHPFRC under axial
loading with various eccentricities. The results show that the NSC columns confined by
UHPC and UHPFRC could sustain higher maximum load and stress as well as sustain larger
vertical deformation and strain compared to the control specimens. The best performance
was achieved by CF2-35 because it has the highest load capacity, vertical deformation,
maximum stress, and also maximum vertical strain, compared to C-0. The specimen CF2-35
also performed a ductile failure mode and very minor cracks. It was also found that 75% of
specimens have a 0–39% error, and 25% have a 0–13% error.

The results of this research found that the addition of 2% fiber volume to the UHPFRC
minimized the crack at failure mode and prevented the confinement spalling from the
column. This research meets the conclusions that the UHPC and UHPFRC confinements
will increase the strength and ductility of the column.
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